Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Top Gear or Black Mirror: Inferring Political Leaning From Non-Political Content (2208.05662v1)

Published 11 Aug 2022 in cs.SI, cs.CL, and cs.CY

Abstract: Polarization and echo chambers are often studied in the context of explicitly political events such as elections, and little scholarship has examined the mixing of political groups in non-political contexts. A major obstacle to studying political polarization in non-political contexts is that political leaning (i.e., left vs right orientation) is often unknown. Nonetheless, political leaning is known to correlate (sometimes quite strongly) with many lifestyle choices leading to stereotypes such as the "latte-drinking liberal." We develop a machine learning classifier to infer political leaning from non-political text and, optionally, the accounts a user follows on social media. We use Voter Advice Application results shared on Twitter as our groundtruth and train and test our classifier on a Twitter dataset comprising the 3,200 most recent tweets of each user after removing any tweets with political text. We correctly classify the political leaning of most users (F1 scores range from 0.70 to 0.85 depending on coverage). We find no relationship between the level of political activity and our classification results. We apply our classifier to a case study of news sharing in the UK and discover that, in general, the sharing of political news exhibits a distinctive left-right divide while sports news does not.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.