Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PPMN: Pixel-Phrase Matching Network for One-Stage Panoptic Narrative Grounding (2208.05647v1)

Published 11 Aug 2022 in cs.CV and cs.MM

Abstract: Panoptic Narrative Grounding (PNG) is an emerging task whose goal is to segment visual objects of things and stuff categories described by dense narrative captions of a still image. The previous two-stage approach first extracts segmentation region proposals by an off-the-shelf panoptic segmentation model, then conducts coarse region-phrase matching to ground the candidate regions for each noun phrase. However, the two-stage pipeline usually suffers from the performance limitation of low-quality proposals in the first stage and the loss of spatial details caused by region feature pooling, as well as complicated strategies designed for things and stuff categories separately. To alleviate these drawbacks, we propose a one-stage end-to-end Pixel-Phrase Matching Network (PPMN), which directly matches each phrase to its corresponding pixels instead of region proposals and outputs panoptic segmentation by simple combination. Thus, our model can exploit sufficient and finer cross-modal semantic correspondence from the supervision of densely annotated pixel-phrase pairs rather than sparse region-phrase pairs. In addition, we also propose a Language-Compatible Pixel Aggregation (LCPA) module to further enhance the discriminative ability of phrase features through multi-round refinement, which selects the most compatible pixels for each phrase to adaptively aggregate the corresponding visual context. Extensive experiments show that our method achieves new state-of-the-art performance on the PNG benchmark with 4.0 absolute Average Recall gains.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube