Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Customized Watermarking for Deep Neural Networks via Label Distribution Perturbation (2208.05477v1)

Published 10 Aug 2022 in cs.CR and cs.LG

Abstract: With the increasing application value of machine learning, the intellectual property (IP) rights of deep neural networks (DNN) are getting more and more attention. With our analysis, most of the existing DNN watermarking methods can resist fine-tuning and pruning attack, but distillation attack. To address these problem, we propose a new DNN watermarking framework, Unified Soft-label Perturbation (USP), having a detector paired with the model to be watermarked, and Customized Soft-label Perturbation (CSP), embedding watermark via adding perturbation into the model output probability distribution. Experimental results show that our methods can resist all watermark removal attacks and outperform in distillation attack. Besides, we also have an excellent trade-off between the main task and watermarking that achieving 98.68% watermark accuracy while only affecting the main task accuracy by 0.59%.

Summary

We haven't generated a summary for this paper yet.