Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting COVID-19 from digitized ECG printouts using 1D convolutional neural networks (2208.05433v2)

Published 10 Aug 2022 in eess.IV and cs.CV

Abstract: The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, raising the need to develop novel tools to provide rapid and cost-effective screening and diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method to extract ECG signals from ECG paper records, which are then fed into a one-dimensional convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward, RR intervals calculated from each image are compared to RR intervals of the corresponding digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the proposed digitization method is able to capture correctly the original signals, with a mean absolute error of 28.11 ms. Our proposed 1D-CNN model, which is trained on the digitized ECG signals, allows identifying individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42%, 95.63%, and 98.50% for classifying COVID-19 vs. Normal, COVID-19 vs. Abnormal Heartbeats, and COVID-19 vs. other classes, respectively. Furthermore, the proposed method also achieves a high-level of performance for the multi-classification task. Our findings indicate that a deep learning system trained on digitized ECG signals can serve as a potential tool for diagnosing COVID-19.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Thao Nguyen (41 papers)
  2. Hieu H. Pham (35 papers)
  3. Huy Khiem Le (1 paper)
  4. Anh Tu Nguyen (1 paper)
  5. Ngoc Tien Thanh (1 paper)
  6. Cuong Do (14 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.