Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Computing the theta function (2208.05405v2)

Published 10 Aug 2022 in math.NA, cs.CG, cs.DS, cs.NA, and math.CO

Abstract: Let $f: {\Bbb R}n \longrightarrow {\Bbb R}$ be a positive definite quadratic form and let $y \in {\Bbb R}n$ be a point. We present a fully polynomial randomized approximation scheme (FPRAS) for computing $\sum_{x \in {\Bbb Z}n} e{-f(x)}$, provided the eigenvalues of $f$ lie in the interval roughly between $s$ and $e{s}$ and for computing $\sum_{x \in {\Bbb Z}n} e{-f(x-y)}$, provided the eigenvalues of $f$ lie in the interval roughly between $e{-s}$ and $s{-1}$ for some $s \geq 3$. To compute the first sum, we represent it as the integral of an explicit log-concave function on ${\Bbb R}n$, and to compute the second sum, we use the reciprocity relation for theta functions. We then apply our results to test the existence of many short integer vectors in a given subspace $L \subset {\Bbb R}n$, to estimate the distance from a given point to a lattice, and to sample a random lattice point from the discrete Gaussian distribution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube