Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DVR: Micro-Video Recommendation Optimizing Watch-Time-Gain under Duration Bias (2208.05190v1)

Published 10 Aug 2022 in cs.IR and cs.MM

Abstract: Recommender systems are prone to be misled by biases in the data. Models trained with biased data fail to capture the real interests of users, thus it is critical to alleviate the impact of bias to achieve unbiased recommendation. In this work, we focus on an essential bias in micro-video recommendation, duration bias. Specifically, existing micro-video recommender systems usually consider watch time as the most critical metric, which measures how long a user watches a video. Since videos with longer duration tend to have longer watch time, there exists a kind of duration bias, making longer videos tend to be recommended more against short videos. In this paper, we empirically show that commonly-used metrics are vulnerable to duration bias, making them NOT suitable for evaluating micro-video recommendation. To address it, we further propose an unbiased evaluation metric, called WTG (short for Watch Time Gain). Empirical results reveal that WTG can alleviate duration bias and better measure recommendation performance. Moreover, we design a simple yet effective model named DVR (short for Debiased Video Recommendation) that can provide unbiased recommendation of micro-videos with varying duration, and learn unbiased user preferences via adversarial learning. Extensive experiments based on two real-world datasets demonstrate that DVR successfully eliminates duration bias and significantly improves recommendation performance with over 30% relative progress. Codes and datasets are released at https://github.com/tsinghua-fib-lab/WTG-DVR.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube