Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Plug-and-Play Model-Agnostic Counterfactual Policy Synthesis for Deep Reinforcement Learning based Recommendation (2208.05142v3)

Published 10 Aug 2022 in cs.IR

Abstract: Recent advances in recommender systems have proved the potential of Reinforcement Learning (RL) to handle the dynamic evolution processes between users and recommender systems. However, learning to train an optimal RL agent is generally impractical with commonly sparse user feedback data in the context of recommender systems. To circumvent the lack of interaction of current RL-based recommender systems, we propose to learn a general Model-Agnostic Counterfactual Synthesis (MACS) Policy for counterfactual user interaction data augmentation. The counterfactual synthesis policy aims to synthesise counterfactual states while preserving significant information in the original state relevant to the user's interests, building upon two different training approaches we designed: learning with expert demonstrations and joint training. As a result, the synthesis of each counterfactual data is based on the current recommendation agent's interaction with the environment to adapt to users' dynamic interests. We integrate the proposed policy Deep Deterministic Policy Gradient (DDPG), Soft Actor Critic (SAC) and Twin Delayed DDPG in an adaptive pipeline with a recommendation agent that can generate counterfactual data to improve the performance of recommendation. The empirical results on both online simulation and offline datasets demonstrate the effectiveness and generalisation of our counterfactual synthesis policy and verify that it improves the performance of RL recommendation agents.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.