Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Programming Nonlinear Propagation for Efficient Optical Learning Machines (2208.04951v1)

Published 9 Aug 2022 in cs.ET and physics.optics

Abstract: The ever-increasing demand for processing data with larger machine learning models requires more efficient hardware solutions due to limitations such as power dissipation and scalability. Optics is a promising contender for providing lower power computation since light propagation through a non-absorbing medium is a lossless operation. However, to carry out useful and efficient computations with light, generating and controlling nonlinearity optically is a necessity that is still elusive. Multimode fibers (MMF) have been shown that they can provide nonlinear effects with microwatts of average power while maintaining parallelism and low loss. In this work, we propose an optical neural network architecture, which performs nonlinear optical computation by controlling the propagation of ultrashort pulses in MMF by wavefront shaping. With a surrogate model, optimal sets of parameters are found to program this optical computer for different tasks with minimal utilization of an electronic computer. We show a remarkable decrease of 97% in the number of model parameters, which leads to an overall 99% digital operation reduction compared to an equivalently performing digital neural network. We further demonstrate that a fully optical implementation can also be performed with competitive accuracies.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.