Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Design of High-Throughput Mixed-Precision CNN Accelerators on FPGA (2208.04854v1)

Published 9 Aug 2022 in cs.AR, cs.AI, and cs.LG

Abstract: Convolutional Neural Networks (CNNs) reach high accuracies in various application domains, but require large amounts of computation and incur costly data movements. One method to decrease these costs while trading accuracy is weight and/or activation word-length reduction. Thereby, layer-wise mixed-precision quantization allows for more efficient results while inflating the design space. In this work, we present an in-depth quantitative methodology to efficiently explore the design space considering the limited hardware resources of a given FPGA. Our holistic exploration approach vertically traverses the various design entry levels from the architectural down to the logic level, and laterally covers optimization from processing elements to dataflow for an efficient mixed-precision CNN accelerator. Our resulting hardware accelerators implement truly mixed-precision operations that enable efficient execution of layer-wise and channel-wise quantized CNNs. Mapping feed-forward and identity-shortcut-connection mixed-precision CNNs result in competitive accuracy-throughout trade-offs: 245 frames/s with 87.48% Top-5 accuracy for ResNet-18 and 92.9% Top-5 accuracy with 1.13 TOps/s for ResNet-152, respectively. Thereby, the required memory footprint for parameters is reduced by 4.9x and 9.4x compared to the respective floating-point baseline.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.