Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Machine Learning for Malware Detection over Time (2208.04838v1)

Published 9 Aug 2022 in cs.CR

Abstract: The presence and persistence of Android malware is an on-going threat that plagues this information era, and machine learning technologies are now extensively used to deploy more effective detectors that can block the majority of these malicious programs. However, these algorithms have not been developed to pursue the natural evolution of malware, and their performances significantly degrade over time because of such concept-drift. Currently, state-of-the-art techniques only focus on detecting the presence of such drift, or they address it by relying on frequent updates of models. Hence, there is a lack of knowledge regarding the cause of the concept drift, and ad-hoc solutions that can counter the passing of time are still under-investigated. In this work, we commence to address these issues as we propose (i) a drift-analysis framework to identify which characteristics of data are causing the drift, and (ii) SVM-CB, a time-aware classifier that leverages the drift-analysis information to slow down the performance drop. We highlight the efficacy of our contribution by comparing its degradation over time with a state-of-the-art classifier, and we show that SVM-CB better withstands the distribution changes that naturally characterize the malware domain. We conclude by discussing the limitations of our approach and how our contribution can be taken as a first step towards more time-resistant classifiers that not only tackle, but also understand the concept drift that affects data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.