Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ASR Error Correction with Constrained Decoding on Operation Prediction (2208.04641v1)

Published 9 Aug 2022 in cs.CL and eess.AS

Abstract: Error correction techniques remain effective to refine outputs from automatic speech recognition (ASR) models. Existing end-to-end error correction methods based on an encoder-decoder architecture process all tokens in the decoding phase, creating undesirable latency. In this paper, we propose an ASR error correction method utilizing the predictions of correction operations. More specifically, we construct a predictor between the encoder and the decoder to learn if a token should be kept ("K"), deleted ("D"), or changed ("C") to restrict decoding to only part of the input sequence embeddings (the "C" tokens) for fast inference. Experiments on three public datasets demonstrate the effectiveness of the proposed approach in reducing the latency of the decoding process in ASR correction. It enhances the inference speed by at least three times (3.4 and 5.7 times) while maintaining the same level of accuracy (with WER reductions of 0.53% and 1.69% respectively) for our two proposed models compared to a solid encoder-decoder baseline. In the meantime, we produce and release a benchmark dataset contributing to the ASR error correction community to foster research along this line.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.