Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Improved Trickle-Down Theorem for Partite Complexes (2208.04486v3)

Published 9 Aug 2022 in cs.DM, cs.DS, and math.CO

Abstract: We prove a strengthening of the trickle down theorem for partite complexes. Given a $(d+1)$-partite $d$-dimensional simplicial complex, we show that if "on average" the links of faces of co-dimension 2 are $\frac{1-\delta}{d}$-(one-sided) spectral expanders, then the link of any face of co-dimension $k$ is an $O(\frac{1-\delta}{k\delta})$-(one-sided) spectral expander, for all $3\leq k\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have spectral expansion at most $O(1/k)$ fraction of the spectral expansion of the links of the worst faces of co-dimension $2$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.