Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural Network (2208.04319v2)

Published 7 Aug 2022 in cs.NE and cs.LG

Abstract: Solving partial differential equations (PDEs) is an important research means in the fields of physics, biology, and chemistry. As an approximate alternative to numerical methods, PINN has received extensive attention and played an important role in many fields. However, PINN uses a fully connected network as its model, which has limited fitting ability and limited extrapolation ability in both time and space. In this paper, we propose PhyGNNet for solving partial differential equations on the basics of a graph neural network which consists of encoder, processer, and decoder blocks. In particular, we divide the computing area into regular grids, define partial differential operators on the grids, then construct pde loss for the network to optimize to build PhyGNNet model. What's more, we conduct comparative experiments on Burgers equation and heat equation to validate our approach, the results show that our method has better fit ability and extrapolation ability both in time and spatial areas compared with PINN.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.