Papers
Topics
Authors
Recent
2000 character limit reached

PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural Network

Published 7 Aug 2022 in cs.NE and cs.LG | (2208.04319v2)

Abstract: Solving partial differential equations (PDEs) is an important research means in the fields of physics, biology, and chemistry. As an approximate alternative to numerical methods, PINN has received extensive attention and played an important role in many fields. However, PINN uses a fully connected network as its model, which has limited fitting ability and limited extrapolation ability in both time and space. In this paper, we propose PhyGNNet for solving partial differential equations on the basics of a graph neural network which consists of encoder, processer, and decoder blocks. In particular, we divide the computing area into regular grids, define partial differential operators on the grids, then construct pde loss for the network to optimize to build PhyGNNet model. What's more, we conduct comparative experiments on Burgers equation and heat equation to validate our approach, the results show that our method has better fit ability and extrapolation ability both in time and spatial areas compared with PINN.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.