Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Guessing to Sequential Decoding of Polarization-Adjusted Convolutional (PAC) Codes (2208.04010v2)

Published 8 Aug 2022 in cs.IT and math.IT

Abstract: Despite the extreme error-correction performance, the amount of computation of sequential decoding of the polarization-adjusted convolutional (PAC) codes is random. In sequential decoding of convolutional codes, the computational cutoff rate denotes the region between rates whose average computational complexity of decoding is finite and those which is infinite. In this paper, by benefiting from the polarization and guessing techniques, we prove that the computational cutoff rate in sequential decoding of pre-transformed polar codes polarizes. The polarization of the computational cutoff rate affects the criteria for the rate-profile construction of the pre-transformed polar codes. We propose a technique for taming the Reed-Muller (RM) rate-profile construction, and the performance results demonstrate that the error-correction performance of the PAC codes can achieve the theoretical bounds using the tamed-RM rate-profile construction and requires a significantly lower computational complexity than the RM rate-profile construction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.