Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unbiased Estimation of the Vanilla and Deterministic Ensemble Kalman-Bucy Filters (2208.03947v1)

Published 8 Aug 2022 in stat.ME, cs.NA, and math.NA

Abstract: In this article we consider the development of an unbiased estimator for the ensemble Kalman--Bucy filter (EnKBF). The EnKBF is a continuous-time filtering methodology which can be viewed as a continuous-time analogue of the famous discrete-time ensemble Kalman filter. Our unbiased estimators will be motivated from recent work [Rhee & Glynn 2010, [31]] which introduces randomization as a means to produce unbiased and finite variance estimators. The randomization enters through both the level of discretization, and through the number of samples at each level. Our estimator will be specific to linear and Gaussian settings, where we know that the EnKBF is consistent, in the particle limit $N \rightarrow \infty$, with the KBF. We highlight this for two particular variants of the EnKBF, i.e. the deterministic and vanilla variants, and demonstrate this on a linear Ornstein--Uhlenbeck process. We compare this with the EnKBF and the multilevel (MLEnKBF), for experiments with varying dimension size. We also provide a proof of the multilevel deterministic EnKBF, which provides a guideline for some of the unbiased methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.