Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Optimization Machine: A Neural Network Approach for Optimization (2208.03897v1)

Published 8 Aug 2022 in stat.ML, cs.LG, and math.OC

Abstract: A novel neural network (NN) approach is proposed for constrained optimization. The proposed method uses a specially designed NN architecture and training/optimization procedure called Neural Optimization Machine (NOM). The objective functions for the NOM are approximated with NN models. The optimization process is conducted by the neural network's built-in backpropagation algorithm. The NOM solves optimization problems by extending the architecture of the NN objective function model. This is achieved by appropriately designing the NOM's structure, activation function, and loss function. The NN objective function can have arbitrary architectures and activation functions. The application of the NOM is not limited to specific optimization problems, e.g., linear and quadratic programming. It is shown that the increase of dimension of design variables does not increase the computational cost significantly. Then, the NOM is extended for multiobjective optimization. Finally, the NOM is tested using numerical optimization problems and applied for the optimal design of processing parameters in additive manufacturing.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.