Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Vernacular Search Query Translation with Unsupervised Domain Adaptation (2208.03711v1)

Published 7 Aug 2022 in cs.CL

Abstract: With the democratization of e-commerce platforms, an increasingly diversified user base is opting to shop online. To provide a comfortable and reliable shopping experience, it's important to enable users to interact with the platform in the language of their choice. An accurate query translation is essential for Cross-Lingual Information Retrieval (CLIR) with vernacular queries. Due to internet-scale operations, e-commerce platforms get millions of search queries every day. However, creating a parallel training set to train an in-domain translation model is cumbersome. This paper proposes an unsupervised domain adaptation approach to translate search queries without using any parallel corpus. We use an open-domain translation model (trained on public corpus) and adapt it to the query data using only the monolingual queries from two languages. In addition, fine-tuning with a small labeled set further improves the result. For demonstration, we show results for Hindi to English query translation and use mBART-large-50 model as the baseline to improve upon. Experimental results show that, without using any parallel corpus, we obtain more than 20 BLEU points improvement over the baseline while fine-tuning with a small 50k labeled set provides more than 27 BLEU points improvement over the baseline.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.