Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generating Negative Samples for Sequential Recommendation (2208.03645v1)

Published 7 Aug 2022 in cs.IR and cs.AI

Abstract: To make Sequential Recommendation (SR) successful, recent works focus on designing effective sequential encoders, fusing side information, and mining extra positive self-supervision signals. The strategy of sampling negative items at each time step is less explored. Due to the dynamics of users' interests and model updates during training, considering randomly sampled items from a user's non-interacted item set as negatives can be uninformative. As a result, the model will inaccurately learn user preferences toward items. Identifying informative negatives is challenging because informative negative items are tied with both dynamically changed interests and model parameters (and sampling process should also be efficient). To this end, we propose to Generate Negative Samples (items) for SR (GenNi). A negative item is sampled at each time step based on the current SR model's learned user preferences toward items. An efficient implementation is proposed to further accelerate the generation process, making it scalable to large-scale recommendation tasks. Extensive experiments on four public datasets verify the importance of providing high-quality negative samples for SR and demonstrate the effectiveness and efficiency of GenNi.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube