Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Triple Sparsification of Graph Convolutional Networks without Sacrificing the Accuracy (2208.03559v1)

Published 6 Aug 2022 in cs.LG and cs.PF

Abstract: Graph Neural Networks (GNNs) are widely used to perform different machine learning tasks on graphs. As the size of the graphs grows, and the GNNs get deeper, training and inference time become costly in addition to the memory requirement. Thus, without sacrificing accuracy, graph sparsification, or model compression becomes a viable approach for graph learning tasks. A few existing techniques only study the sparsification of graphs and GNN models. In this paper, we develop a SparseGCN pipeline to study all possible sparsification in GNN. We provide a theoretical analysis and empirically show that it can add up to 11.6\% additional sparsity to the embedding matrix without sacrificing the accuracy of the commonly used benchmark graph datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.