Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Compositional Reinforcement Learning for Discrete-Time Stochastic Control Systems (2208.03485v1)

Published 6 Aug 2022 in eess.SY and cs.SY

Abstract: We propose a compositional approach to synthesize policies for networks of continuous-space stochastic control systems with unknown dynamics using model-free reinforcement learning (RL). The approach is based on implicitly abstracting each subsystem in the network with a finite Markov decision process with unknown transition probabilities, synthesizing a strategy for each abstract model in an assume-guarantee fashion using RL, and then mapping the results back over the original network with approximate optimality guarantees. We provide lower bounds on the satisfaction probability of the overall network based on those over individual subsystems. A key contribution is to leverage the convergence results for adversarial RL (minimax Q-learning) on finite stochastic arenas to provide control strategies maximizing the probability of satisfaction over the network of continuous-space systems. We consider finite-horizon properties expressed in the syntactically co-safe fragment of linear temporal logic. These properties can readily be converted into automata-based reward functions, providing scalar reward signals suitable for RL. Since such reward functions are often sparse, we supply a potential-based reward shaping technique to accelerate learning by producing dense rewards. The effectiveness of the proposed approaches is demonstrated via two physical benchmarks including regulation of a room temperature network and control of a road traffic network.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.