Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Survey on Visual Map Localization Using LiDARs and Cameras (2208.03376v1)

Published 5 Aug 2022 in cs.CV and cs.RO

Abstract: As the autonomous driving industry is slowly maturing, visual map localization is quickly becoming the standard approach to localize cars as accurately as possible. Owing to the rich data returned by visual sensors such as cameras or LiDARs, researchers are able to build different types of maps with various levels of details, and use them to achieve high levels of vehicle localization accuracy and stability in urban environments. Contrary to the popular SLAM approaches, visual map localization relies on pre-built maps, and is focused solely on improving the localization accuracy by avoiding error accumulation or drift. We define visual map localization as a two-stage process. At the stage of place recognition, the initial position of the vehicle in the map is determined by comparing the visual sensor output with a set of geo-tagged map regions of interest. Subsequently, at the stage of map metric localization, the vehicle is tracked while it moves across the map by continuously aligning the visual sensors' output with the current area of the map that is being traversed. In this paper, we survey, discuss and compare the latest methods for LiDAR based, camera based and cross-modal visual map localization for both stages, in an effort to highlight the strength and weakness of each approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.