Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Acoustic Domain Identification with its Application to Speaker Diarization (2208.03162v2)

Published 5 Aug 2022 in cs.SD and eess.AS

Abstract: With the rise in multimedia content over the years, more variety is observed in the recording environments of audio. An audio processing system might benefit when it has a module to identify the acoustic domain at its front-end. In this paper, we demonstrate the idea of \emph{acoustic domain identification} (ADI) for \emph{speaker diarization}. For this, we first present a detailed study of the various domains of the third DIHARD challenge highlighting the factors that differentiated them from each other. Our main contribution is to develop a simple and efficient solution for ADI. In the present work, we explore speaker embeddings for this task. Next, we integrate the ADI module with the speaker diarization framework of the DIHARD III challenge. The performance substantially improved over that of the baseline when the thresholds for agglomerative hierarchical clustering were optimized according to the respective domains. We achieved a relative improvement of more than $5\%$ and $8\%$ in DER for core and full conditions, respectively, on Track 1 of the DIHARD III evaluation set.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube