Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Compressing (Multidimensional) Learned Bloom Filters (2208.03029v1)

Published 5 Aug 2022 in cs.DB and cs.LG

Abstract: Bloom filters are widely used data structures that compactly represent sets of elements. Querying a Bloom filter reveals if an element is not included in the underlying set or is included with a certain error rate. This membership testing can be modeled as a binary classification problem and solved through deep learning models, leading to what is called learned Bloom filters. We have identified that the benefits of learned Bloom filters are apparent only when considering a vast amount of data, and even then, there is a possibility to further reduce their memory consumption. For that reason, we introduce a lossless input compression technique that improves the memory consumption of the learned model while preserving a comparable model accuracy. We evaluate our approach and show significant memory consumption improvements over learned Bloom filters.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.