Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel Enhanced Convolution Neural Network with Extreme Learning Machine: Facial Emotional Recognition in Psychology Practices (2208.02953v1)

Published 5 Aug 2022 in cs.CV, cs.LG, and cs.NE

Abstract: Facial emotional recognition is one of the essential tools used by recognition psychology to diagnose patients. Face and facial emotional recognition are areas where machine learning is excelling. Facial Emotion Recognition in an unconstrained environment is an open challenge for digital image processing due to different environments, such as lighting conditions, pose variation, yaw motion, and occlusions. Deep learning approaches have shown significant improvements in image recognition. However, accuracy and time still need improvements. This research aims to improve facial emotion recognition accuracy during the training session and reduce processing time using a modified Convolution Neural Network Enhanced with Extreme Learning Machine (CNNEELM). The system entails (CNNEELM) improving the accuracy in image registration during the training session. Furthermore, the system recognizes six facial emotions happy, sad, disgust, fear, surprise, and neutral with the proposed CNNEELM model. The study shows that the overall facial emotion recognition accuracy is improved by 2% than the state of art solutions with a modified Stochastic Gradient Descent (SGD) technique. With the Extreme Learning Machine (ELM) classifier, the processing time is brought down to 65ms from 113ms, which can smoothly classify each frame from a video clip at 20fps. With the pre-trained InceptionV3 model, the proposed CNNEELM model is trained with JAFFE, CK+, and FER2013 expression datasets. The simulation results show significant improvements in accuracy and processing time, making the model suitable for the video analysis process. Besides, the study solves the issue of the large processing time required to process the facial images.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube