Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Simple and Tighter Derivation of Achievability for Classical Communication over Quantum Channels (2208.02132v2)

Published 3 Aug 2022 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Achievability in information theory refers to demonstrating a coding strategy that accomplishes a prescribed performance benchmark for the underlying task. In quantum information theory, the crafted Hayashi-Nagaoka operator inequality is an essential technique in proving a wealth of one-shot achievability bounds since it effectively resembles a union bound in various problems. In this work, we show that the pretty-good measurement naturally plays a role as the union bound as well. A judicious application of it considerably simplifies the derivation of one-shot achievability for classical-quantum (c-q) channel coding via an elegant three-line proof. The proposed analysis enjoys the following favorable features. (i) The established one-shot bound admits a closed-form expression as in the celebrated Holevo-Helstrom Theorem. Namely, the error probability of sending $M$ messages through a c-q channel is upper bounded by the minimum error of distinguishing the joint channel input-output state against $(M-1)$ decoupled products states. (ii) Our bound directly yields asymptotic results in the large deviation, small deviation, and moderate deviation regimes in a unified manner. (iii) The coefficients incurred in applying the Hayashi-Nagaoka operator inequality are no longer needed. Hence, the derived one-shot bound sharpens existing results relying on the Hayashi-Nagaoka operator inequality. In particular, we obtain the tightest achievable $\epsilon$-one-shot capacity for c-q channel coding heretofore, improving the third-order coding rate in the asymptotic scenario. (iv) Our result holds for infinite-dimensional Hilbert space. (v) The proposed method applies to deriving one-shot achievability for classical data compression with quantum side information, entanglement-assisted classical communication over quantum channels, and various quantum network information-processing protocols.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.