Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A primal finite element scheme of the Hodge Laplace problem (2208.00575v1)

Published 1 Aug 2022 in math.NA and cs.NA

Abstract: In this paper, a unified family, for any $n\geqslant 2$ and $1\leqslant k\leqslant n-1$, of nonconforming finite element schemes are presented for the primal weak formulation of the $n$-dimensional Hodge-Laplace equation on $H\Lambdak\cap H*_0\Lambdak$ and on the simplicial subdivisions of the domain. The finite element scheme possesses an $\mathcal{O}(h)$-order convergence rate for sufficiently regular data, and an $\mathcal{O}(hs)$-order rate on any $s$-regular domain, $0<s\leqslant 1$, no matter what topology the domain has.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shuo Zhang (256 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.