Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GraphMFT: A Graph Network based Multimodal Fusion Technique for Emotion Recognition in Conversation (2208.00339v5)

Published 31 Jul 2022 in cs.MM

Abstract: Multimodal machine learning is an emerging area of research, which has received a great deal of scholarly attention in recent years. Up to now, there are few studies on multimodal Emotion Recognition in Conversation (ERC). Since Graph Neural Networks (GNNs) possess the powerful capacity of relational modeling, they have an inherent advantage in the field of multimodal learning. GNNs leverage the graph constructed from multimodal data to perform intra- and inter-modal information interaction, which effectively facilitates the integration and complementation of multimodal data. In this work, we propose a novel Graph network based Multimodal Fusion Technique (GraphMFT) for emotion recognition in conversation. Multimodal data can be modeled as a graph, where each data object is regarded as a node, and both intra- and inter-modal dependencies existing between data objects can be regarded as edges. GraphMFT utilizes multiple improved graph attention networks to capture intra-modal contextual information and inter-modal complementary information. In addition, the proposed GraphMFT attempts to address the challenges of existing graph-based multimodal conversational emotion recognition models such as MMGCN. Empirical results on two public multimodal datasets reveal that our model outperforms the State-Of-The-Art (SOTA) approaches with the accuracy of 67.90% and 61.30%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.1145/1957656.1957669.
  2. doi:10.1007/s10462-021-10030-2.
  3. doi:10.1016/j.knosys.2019.104886.
  4. doi:10.18653/v1/N19-1037.
  5. doi:10.1609/aaai.v33i01.33016818.
  6. doi:10.18653/v1/2021.acl-long.123.
  7. doi:10.18653/v1/2021.acl-long.547.
  8. doi:10.1037/0003-066X.46.8.819.
  9. doi:10.18653/v1/D19-1015.
  10. doi:10.18653/v1/2020.emnlp-main.597.
  11. doi:10.18653/v1/D19-1016.
  12. doi:10.24963/ijcai.2019/752.
  13. doi:10.18653/v1/2021.acl-long.440.
  14. doi:10.1109/TNNLS.2020.2978386.
  15. doi:10.1145/3474085.3475583.
  16. doi:10.5555/3524938.3525099.
  17. doi:10.1609/aaai.v35i15.17625.
  18. doi:10.1016/j.inffus.2017.02.003.
  19. doi:10.18653/v1/N18-1193.
  20. doi:10.18653/v1/D18-1280.
  21. doi:10.1609/aaai.v32i1.12021.
  22. doi:10.18653/v1/P17-1081.
  23. doi:10.1109/TPAMI.2018.2798607.
  24. doi:10.1145/3394171.3413690.
  25. doi:10.1145/3197517.3201357.
  26. doi:10.18653/v1/2020.challengehml-1.3.
  27. doi:10.18653/v1/W18-3303.
  28. doi:10.1109/ICASSP40776.2020.9053012.
  29. doi:10.1145/3136755.3136801.
  30. doi:10.1145/3462244.3479919.
  31. doi:10.1109/CVPR.2017.243.
  32. doi:10.1016/j.specom.2011.01.011.
  33. doi:10.3115/v1/D14-1181.
  34. doi:10.1109/TPAMI.2021.3074057.
  35. doi:10.18653/v1/D17-1115.
  36. doi:10.18653/v1/p19-1050.
  37. doi:10.1007/s10579-008-9076-6.
Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.