A point to set principle for finite-state dimension (2208.00157v2)
Abstract: Effective dimension has proven very useful in geometric measure theory through the point-to-set principle \cite{LuLu18}\ that characterizes Hausdorff dimension by relativized effective dimension. Finite-state dimension is the least demanding effectivization in this context \cite{FSD}\ that among other results can be used to characterize Borel normality \cite{BoHiVi05}. In this paper we prove a characterization of finite-state dimension in terms of information content of a real number at a certain precision. We then use this characterization to give a robust concept of relativized normality and prove a finite-state dimension point-to-set principle. We finish with an open question on the equidistribution properties of relativized normality.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.