Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A point to set principle for finite-state dimension (2208.00157v2)

Published 30 Jul 2022 in cs.CC

Abstract: Effective dimension has proven very useful in geometric measure theory through the point-to-set principle \cite{LuLu18}\ that characterizes Hausdorff dimension by relativized effective dimension. Finite-state dimension is the least demanding effectivization in this context \cite{FSD}\ that among other results can be used to characterize Borel normality \cite{BoHiVi05}. In this paper we prove a characterization of finite-state dimension in terms of information content of a real number at a certain precision. We then use this characterization to give a robust concept of relativized normality and prove a finite-state dimension point-to-set principle. We finish with an open question on the equidistribution properties of relativized normality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)