Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Meta Reinforcement Learning with Successor Feature Based Context (2207.14723v1)

Published 29 Jul 2022 in cs.LG and cs.AI

Abstract: Most reinforcement learning (RL) methods only focus on learning a single task from scratch and are not able to use prior knowledge to learn other tasks more effectively. Context-based meta RL techniques are recently proposed as a possible solution to tackle this. However, they are usually less efficient than conventional RL and may require many trial-and-errors during training. To address this, we propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms, while requires significantly fewer environmental interactions. By combining context variables with the idea of decomposing reward in successor feature framework, our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training. Compared with state-of-the-art meta-RL baselines, we empirically show the effectiveness and data efficiency of our method on several continuous control tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.