Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spline Representation and Redundancies of One-Dimensional ReLU Neural Network Models (2207.14609v1)

Published 29 Jul 2022 in math.NA and cs.NA

Abstract: We analyze the structure of a one-dimensional deep ReLU neural network (ReLU DNN) in comparison to the model of continuous piecewise linear (CPL) spline functions with arbitrary knots. In particular, we give a recursive algorithm to transfer the parameter set determining the ReLU DNN into the parameter set of a CPL spline function. Using this representation, we show that after removing the well-known parameter redundancies of the ReLU DNN, which are caused by the positive scaling property, all remaining parameters are independent. Moreover, we show that the ReLU DNN with one, two or three hidden layers can represent CPL spline functions with $K$ arbitrarily prescribed knots (breakpoints), where $K$ is the number of real parameters determining the normalized ReLU DNN (up to the output layer parameters). Our findings are useful to fix a priori conditions on the ReLU DNN to achieve an output with prescribed breakpoints and function values.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.