Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for System-on-Chip: Myths and Realities (2207.14595v1)

Published 29 Jul 2022 in cs.LG, cs.AI, and cs.DC

Abstract: Neural schedulers based on deep reinforcement learning (DRL) have shown considerable potential for solving real-world resource allocation problems, as they have demonstrated significant performance gain in the domain of cluster computing. In this paper, we investigate the feasibility of neural schedulers for the domain of System-on-Chip (SoC) resource allocation through extensive experiments and comparison with non-neural, heuristic schedulers. The key finding is three-fold. First, neural schedulers designed for cluster computing domain do not work well for SoC due to i) heterogeneity of SoC computing resources and ii) variable action set caused by randomness in incoming jobs. Second, our novel neural scheduler technique, Eclectic Interaction Matching (EIM), overcomes the above challenges, thus significantly improving the existing neural schedulers. Specifically, we rationalize the underlying reasons behind the performance gain by the EIM-based neural scheduler. Third, we discover that the ratio of the average processing elements (PE) switching delay and the average PE computation time significantly impacts the performance of neural SoC schedulers even with EIM. Consequently, future neural SoC scheduler design must consider this metric as well as its implementation overhead for practical utility.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.