Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear Last-Iterate Convergence for Continuous Games with Coupled Inequality Constraints (2207.13924v1)

Published 28 Jul 2022 in cs.GT

Abstract: In this paper, the generalized Nash equilibrium (GNE) seeking problem for continuous games with coupled affine inequality constraints is investigated in a partial-decision information scenario, where each player can only access its neighbors' information through local communication although its cost function possibly depends on all other players' strategies. To this end, a novel decentralized primal-dual algorithm based on consensus and dual diffusion methods is devised for seeking the variational GNE of the studied games. This paper also provides theoretical analysis to show that the designed algorithm converges linearly for the last-iterate, which, to our best knowledge, is the first to propose a linearly convergent GNE seeking algorithm under coupled affine inequality constraints. Finally, a numerical example is presented to demonstrate the effectiveness of the obtained theoretical results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.