Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UNIMIB at TREC 2021 Clinical Trials Track (2207.13514v1)

Published 27 Jul 2022 in cs.IR and cs.CL

Abstract: This contribution summarizes the participation of the UNIMIB team to the TREC 2021 Clinical Trials Track. We have investigated the effect of different query representations combined with several retrieval models on the retrieval performance. First, we have implemented a neural re-ranking approach to study the effectiveness of dense text representations. Additionally, we have investigated the effectiveness of a novel decision-theoretic model for relevance estimation. Finally, both of the above relevance models have been compared with standard retrieval approaches. In particular, we combined a keyword extraction method with a standard retrieval process based on the BM25 model and a decision-theoretic relevance model that exploits the characteristics of this particular search task. The obtained results show that the proposed keyword extraction method improves 84% of the queries over the TREC's median NDCG@10 measure when combined with either traditional or decision-theoretic relevance models. Moreover, regarding RPEC@10, the employed decision-theoretic model improves 85% of the queries over the reported TREC's median value.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.