Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online set-point estimation for feedback-based traffic control applications (2207.13467v1)

Published 27 Jul 2022 in eess.SY and cs.SY

Abstract: This paper deals with traffic control at motorway bottlenecks assuming the existence of an unknown, time-varying, Fundamental Diagram (FD). The FD may change over time due to different traffic compositions, e.g., light and heavy vehicles, as well as in the presence of connected and automated vehicles equipped with different technologies at varying penetration rates, leading to inconstant and uncertain driving characteristics. A novel methodology, based on Model Reference Adaptive Control, is proposed to robustly estimate in real-time the time-varying set-points that maximise the bottleneck throughput, particularly useful when the traffic is regulated via a feedback-based controller. Furthermore, we demonstrate the global asymptotic stability of the proposed controller through a Lyapunov analysis. The effectiveness of the proposed approach is evaluated via simulation experiments, where the estimator is integrated into a feedback ramp-metering control strategy, employing a second-order multi-lane macroscopic traffic flow model, modified to account for time-varying FDs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.