Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

FishFuzz: Throwing Larger Nets to Catch Deeper Bugs (2207.13393v1)

Published 27 Jul 2022 in cs.CR

Abstract: Greybox fuzzing is the de-facto standard to discover bugs during development. Fuzzers execute many inputs to maximize the amount of reached code. Recently, Directed Greybox Fuzzers (DGFs) propose an alternative strategy that goes beyond "just" coverage: driving testing toward specific code targets by selecting "closer" seeds. DGFs go through different phases: exploration (i.e., reaching interesting locations) and exploitation (i.e., triggering bugs). In practice, DGFs leverage coverage to directly measure exploration, while exploitation is, at best, measured indirectly by alternating between different targets. Specifically, we observe two limitations in existing DGFs: (i) they lack precision in their distance metric, i.e., averaging multiple paths and targets into a single score (to decide which seeds to prioritize), and (ii) they assign energy to seeds in a round-robin fashion without adjusting the priority of the targets (exhaustively explored targets should be dropped). We propose FishFuzz, which draws inspiration from trawl fishing: first casting a wide net, scraping for high coverage, then slowly pulling it in to maximize the harvest. The core of our fuzzer is a novel seed selection strategy that builds on two concepts: (i) a novel multi-distance metric whose precision is independent of the number of targets, and (ii) a dynamic target ranking to automatically discard exhausted targets. This strategy allows FishFuzz to seamlessly scale to tens of thousands of targets and dynamically alternate between exploration and exploitation phases. We evaluate FishFuzz by leveraging all sanitizer labels as targets. Extensively comparing FishFuzz against modern DGFs and coverage-guided fuzzers shows that FishFuzz reached higher coverage compared to the direct competitors, reproduces existing bugs (70.2% faster), and finally discovers 25 new bugs (18 CVEs) in 44 programs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.