Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Camouflaged Object Detection via Context-aware Cross-level Fusion (2207.13362v1)

Published 27 Jul 2022 in cs.CV

Abstract: Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network (C2F-Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare C2F-Net with state-of-the-art (SOTA) models. The results show that C2F-Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our C2F-Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Geng Chen (115 papers)
  2. Si-Jie Liu (1 paper)
  3. Yu-Jia Sun (4 papers)
  4. Ge-Peng Ji (29 papers)
  5. Ya-Feng Wu (1 paper)
  6. Tao Zhou (398 papers)
Citations (98)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub