Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Spatiotemporal Self-attention Modeling with Temporal Patch Shift for Action Recognition (2207.13259v1)

Published 27 Jul 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Transformer-based methods have recently achieved great advancement on 2D image-based vision tasks. For 3D video-based tasks such as action recognition, however, directly applying spatiotemporal transformers on video data will bring heavy computation and memory burdens due to the largely increased number of patches and the quadratic complexity of self-attention computation. How to efficiently and effectively model the 3D self-attention of video data has been a great challenge for transformers. In this paper, we propose a Temporal Patch Shift (TPS) method for efficient 3D self-attention modeling in transformers for video-based action recognition. TPS shifts part of patches with a specific mosaic pattern in the temporal dimension, thus converting a vanilla spatial self-attention operation to a spatiotemporal one with little additional cost. As a result, we can compute 3D self-attention using nearly the same computation and memory cost as 2D self-attention. TPS is a plug-and-play module and can be inserted into existing 2D transformer models to enhance spatiotemporal feature learning. The proposed method achieves competitive performance with state-of-the-arts on Something-something V1 & V2, Diving-48, and Kinetics400 while being much more efficient on computation and memory cost. The source code of TPS can be found at https://github.com/MartinXM/TPS.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.