Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sliced Wasserstein Variational Inference (2207.13177v1)

Published 26 Jul 2022 in stat.ML and cs.LG

Abstract: Variational Inference approximates an unnormalized distribution via the minimization of Kullback-Leibler (KL) divergence. Although this divergence is efficient for computation and has been widely used in applications, it suffers from some unreasonable properties. For example, it is not a proper metric, i.e., it is non-symmetric and does not preserve the triangle inequality. On the other hand, optimal transport distances recently have shown some advantages over KL divergence. With the help of these advantages, we propose a new variational inference method by minimizing sliced Wasserstein distance, a valid metric arising from optimal transport. This sliced Wasserstein distance can be approximated simply by running MCMC but without solving any optimization problem. Our approximation also does not require a tractable density function of variational distributions so that approximating families can be amortized by generators like neural networks. Furthermore, we provide an analysis of the theoretical properties of our method. Experiments on synthetic and real data are illustrated to show the performance of the proposed method.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com