Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Partial-Monotone Adaptive Submodular Maximization (2207.12840v2)

Published 26 Jul 2022 in cs.LG and cs.DS

Abstract: Many sequential decision making problems, including pool-based active learning and adaptive viral marketing, can be formulated as an adaptive submodular maximization problem. Most of existing studies on adaptive submodular optimization focus on either monotone case or non-monotone case. Specifically, if the utility function is monotone and adaptive submodular, \cite{golovin2011adaptive} developed a greedy policy that achieves a $(1-1/e)$ approximation ratio subject to a cardinality constraint. If the utility function is non-monotone and adaptive submodular, \cite{tang2021beyond} showed that a random greedy policy achieves a $1/e$ approximation ratio subject to a cardinality constraint. In this work, we aim to generalize the above mentioned results by studying the partial-monotone adaptive submodular maximization problem. To this end, we introduce the notation of adaptive monotonicity ratio $m\in[0,1]$ to measure the degree of monotonicity of a function. Our main result is to show that a random greedy policy achieves an approximation ratio of $m(1-1/e)+(1-m)(1/e)$ if the utility function is $m$-adaptive monotone and adaptive submodular. Notably this result recovers the aforementioned $(1-1/e)$ and $1/e$ approximation ratios when $m = 0$ and $m = 1$, respectively. We further extend our results to consider a knapsack constraint. We show that a sampling-based policy achieves an approximation ratio of $(m+1)/10$ if the utility function is $m$-adaptive monotone and adaptive submodular. One important implication of our results is that even for a non-monotone utility function, we still can achieve an approximation ratio close to $(1-1/e)$ if this function is ``close'' to a monotone function. This leads to improved performance bounds for many machine learning applications whose utility functions are almost adaptive monotone.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.