Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Variable Transformations in combination with Wavelets and ANOVA for high-dimensional approximation (2207.12826v2)

Published 26 Jul 2022 in math.NA and cs.NA

Abstract: We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis on the torus. With a variable transformation we are able to transform the approximation rates and fast algorithms from the torus to other domains. We perform and analyze scattered-data approximation for smooth but arbitrary density functions by using a least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. For non-periodic functions we propose a new extension method. A proper choice of the extension parameter together with the piece-wise polynomial Chui-Wang wavelets extends the functions appropriately. In every case we are able to bound the approximation error with high probability. Additionally, if the function has low effective dimension (i.e. only interactions of few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to decrease the approximation error. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.