Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Review of the EnKF for Parameter Estimation (2207.12802v1)

Published 26 Jul 2022 in math.NA and cs.NA

Abstract: The ensemble Kalman filter is a well-known and celebrated data assimilation algorithm. It is of particular relevance as it used for high-dimensional problems, by updating an ensemble of particles through a sample mean and covariance matrices. In this chapter we present a relatively recent topic which is the application of the EnKF to inverse problems, known as ensemble Kalman Inversion (EKI). EKI is used for parameter estimation, which can be viewed as a black-box optimizer for PDE-constrained inverse problems. We present in this chapter a review of the discussed methodology, while presenting emerging and new areas of research, where numerical experiments are provided on numerous interesting models arising in geosciences and numerical weather prediction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube