Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Productivity meets Performance: Julia on A64FX (2207.12762v1)

Published 26 Jul 2022 in cs.DC

Abstract: The Fujitsu A64FX ARM-based processor is used in supercomputers such as Fugaku in Japan and Isambard 2 in the UK and provides an interesting combination of hardware features such as Scalable Vector Extension (SVE), and native support for reduced-precision floating-point arithmetic. The goal of this paper is to explore performance of the Julia programming language on the A64FX processor, with a particular focus on reduced precision. Here, we present a performance study on axpy to verify the compilation pipeline, demonstrating that Julia can match the performance of tuned libraries. Additionally, we investigate Message Passing Interface (MPI) scalability and throughput analysis on Fugaku showing next to no significant overheads of Julia of its MPI interface. To explore the usability of Julia to target various floating-point precisions, we present results of ShallowWaters.jl, a shallow water model that can be executed a various levels of precision. Even for such complex applications, Julia's type-flexible programming paradigm offers both, productivity and performance.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.