Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability (2207.12678v2)

Published 26 Jul 2022 in cs.LG

Abstract: Recent findings (e.g., arXiv:2103.00065) demonstrate that modern neural networks trained by full-batch gradient descent typically enter a regime called Edge of Stability (EOS). In this regime, the sharpness, i.e., the maximum Hessian eigenvalue, first increases to the value 2/(step size) (the progressive sharpening phase) and then oscillates around this value (the EOS phase). This paper aims to analyze the GD dynamics and the sharpness along the optimization trajectory. Our analysis naturally divides the GD trajectory into four phases depending on the change of the sharpness. We empirically identify the norm of output layer weight as an interesting indicator of sharpness dynamics. Based on this empirical observation, we attempt to theoretically and empirically explain the dynamics of various key quantities that lead to the change of sharpness in each phase of EOS. Moreover, based on certain assumptions, we provide a theoretical proof of the sharpness behavior in EOS regime in two-layer fully-connected linear neural networks. We also discuss some other empirical findings and the limitation of our theoretical results.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.