Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient and Accurate Skeleton-Based Two-Person Interaction Recognition Using Inter- and Intra-body Graphs (2207.12648v1)

Published 26 Jul 2022 in cs.CV and cs.LG

Abstract: Skeleton-based two-person interaction recognition has been gaining increasing attention as advancements are made in pose estimation and graph convolutional networks. Although the accuracy has been gradually improving, the increasing computational complexity makes it more impractical for a real-world environment. There is still room for accuracy improvement as the conventional methods do not fully represent the relationship between inter-body joints. In this paper, we propose a lightweight model for accurately recognizing two-person interactions. In addition to the architecture, which incorporates middle fusion, we introduce a factorized convolution technique to reduce the weight parameters of the model. We also introduce a network stream that accounts for relative distance changes between inter-body joints to improve accuracy. Experiments using two large-scale datasets, NTU RGB+D 60 and 120, show that our method simultaneously achieved the highest accuracy and relatively low computational complexity compared with the conventional methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.