Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Confirmation Bias in Social Networks (2207.12594v3)

Published 26 Jul 2022 in econ.TH, cs.SI, and physics.soc-ph

Abstract: In this study, I present a theoretical social learning model to investigate how confirmation bias affects opinions when agents exchange information over a social network. Hence, besides exchanging opinions with friends, agents observe a public sequence of potentially ambiguous signals and interpret it according to a rule that includes confirmation bias. First, this study shows that regardless of level of ambiguity both for people or networked society, only two types of opinions can be formed, and both are biased. However, one opinion type is less biased than the other depending on the state of the world. The size of both biases depends on the ambiguity level and relative magnitude of the state and confirmation biases. Hence, long-run learning is not attained even when people impartially interpret ambiguity. Finally, analytically confirming the probability of emergence of the less-biased consensus when people are connected and have different priors is difficult. Hence, I used simulations to analyze its determinants and found three main results: i) some network topologies are more conducive to consensus efficiency, ii) some degree of partisanship enhances consensus efficiency even under confirmation bias and iii) open-mindedness (i.e. when partisans agree to exchange opinions with opposing partisans) might inhibit efficiency in some cases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.