Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semi-Leak: Membership Inference Attacks Against Semi-supervised Learning (2207.12535v1)

Published 25 Jul 2022 in cs.CR, cs.CV, and cs.LG

Abstract: Semi-supervised learning (SSL) leverages both labeled and unlabeled data to train ML models. State-of-the-art SSL methods can achieve comparable performance to supervised learning by leveraging much fewer labeled data. However, most existing works focus on improving the performance of SSL. In this work, we take a different angle by studying the training data privacy of SSL. Specifically, we propose the first data augmentation-based membership inference attacks against ML models trained by SSL. Given a data sample and the black-box access to a model, the goal of membership inference attack is to determine whether the data sample belongs to the training dataset of the model. Our evaluation shows that the proposed attack can consistently outperform existing membership inference attacks and achieves the best performance against the model trained by SSL. Moreover, we uncover that the reason for membership leakage in SSL is different from the commonly believed one in supervised learning, i.e., overfitting (the gap between training and testing accuracy). We observe that the SSL model is well generalized to the testing data (with almost 0 overfitting) but ''memorizes'' the training data by giving a more confident prediction regardless of its correctness. We also explore early stopping as a countermeasure to prevent membership inference attacks against SSL. The results show that early stopping can mitigate the membership inference attack, but with the cost of model's utility degradation.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.