Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NN2Rules: Extracting Rule List from Neural Networks (2207.12271v1)

Published 4 Jul 2022 in cs.LG and cs.AI

Abstract: We present an algorithm, NN2Rules, to convert a trained neural network into a rule list. Rule lists are more interpretable since they align better with the way humans make decisions. NN2Rules is a decompositional approach to rule extraction, i.e., it extracts a set of decision rules from the parameters of the trained neural network model. We show that the decision rules extracted have the same prediction as the neural network on any input presented to it, and hence the same accuracy. A key contribution of NN2Rules is that it allows hidden neuron behavior to be either soft-binary (eg. sigmoid activation) or rectified linear (ReLU) as opposed to existing decompositional approaches that were developed with the assumption of soft-binary activation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.