Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Complementing Semi-Supervised Learning with Uncertainty Quantification (2207.12131v1)

Published 22 Jul 2022 in cs.LG and cs.AI

Abstract: The problem of fully supervised classification is that it requires a tremendous amount of annotated data, however, in many datasets a large portion of data is unlabeled. To alleviate this problem semi-supervised learning (SSL) leverages the knowledge of the classifier on the labeled domain and extrapolates it to the unlabeled domain which has a supposedly similar distribution as annotated data. Recent success on SSL methods crucially hinges on thresholded pseudo labeling and thereby consistency regularization for the unlabeled domain. However, the existing methods do not incorporate the uncertainty of the pseudo labels or unlabeled samples in the training process which are due to the noisy labels or out of distribution samples owing to strong augmentations. Inspired by the recent developments in SSL, our goal in this paper is to propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification. Complementing the recent techniques in SSL with the proposed uncertainty-aware loss function our approach outperforms or is on par with the state-of-the-art over standard SSL benchmarks while being computationally lightweight. Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)