Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generative Subgraph Contrast for Self-Supervised Graph Representation Learning (2207.11996v2)

Published 25 Jul 2022 in cs.LG and cs.AI

Abstract: Contrastive learning has shown great promise in the field of graph representation learning. By manually constructing positive/negative samples, most graph contrastive learning methods rely on the vector inner product based similarity metric to distinguish the samples for graph representation. However, the handcrafted sample construction (e.g., the perturbation on the nodes or edges of the graph) may not effectively capture the intrinsic local structures of the graph. Also, the vector inner product based similarity metric cannot fully exploit the local structures of the graph to characterize the graph difference well. To this end, in this paper, we propose a novel adaptive subgraph generation based contrastive learning framework for efficient and robust self-supervised graph representation learning, and the optimal transport distance is utilized as the similarity metric between the subgraphs. It aims to generate contrastive samples by capturing the intrinsic structures of the graph and distinguish the samples based on the features and structures of subgraphs simultaneously. Specifically, for each center node, by adaptively learning relation weights to the nodes of the corresponding neighborhood, we first develop a network to generate the interpolated subgraph. We then construct the positive and negative pairs of subgraphs from the same and different nodes, respectively. Finally, we employ two types of optimal transport distances (i.e., Wasserstein distance and Gromov-Wasserstein distance) to construct the structured contrastive loss. Extensive node classification experiments on benchmark datasets verify the effectiveness of our graph contrastive learning method.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

  1. GitHub - yh-han/GSC (13 stars)