Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Tensor rank reduction via coordinate flows (2207.11955v2)

Published 25 Jul 2022 in math.NA, cs.NA, math.OC, and physics.comp-ph

Abstract: Recently, there has been a growing interest in efficient numerical algorithms based on tensor networks and low-rank techniques to approximate high-dimensional functions and solutions to high-dimensional PDEs. In this paper, we propose a new tensor rank reduction method based on coordinate transformations that can greatly increase the efficiency of high-dimensional tensor approximation algorithms. The idea is simple: given a multivariate function, determine a coordinate transformation so that the function in the new coordinate system has smaller tensor rank. We restrict our analysis to linear coordinate transformations, which gives rise to a new class of functions that we refer to as tensor ridge functions. Leveraging Riemannian gradient descent on matrix manifolds we develop an algorithm that determines a quasi-optimal linear coordinate transformation for tensor rank reduction.The results we present for rank reduction via linear coordinate transformations open the possibility for generalizations to larger classes of nonlinear transformations. Numerical applications are presented and discussed for linear and nonlinear PDEs.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.